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1 Experimental measurements

We assessed the performance of aLFQ and the different quantification estimation
methods it supports by investigating a commercially available synthetic sample.
The Universal Proteomic Standard 2 (UPS2) consists of 48 proteins spanning a
dynamic range of five orders of magnitude in bins of eight proteins. The sample
was measured in a complex background consisting of Mycobacterium bovis BCG
total cell lysate in shotgun and targeted MS modes. The processed datasets are
available in the aLFQ R-package and can be accessed by the command:

library(aLFQ)
?2UPS2MS

1.1 UPS1 and UPS2 sample preparation

The Universal Proteomics Standard (UPS, Sigma-Aldrich, St. Louis, MO, USA) is a
set of 48 equimolar human proteins, with a total of 592 theoretical tryptic
peptides with at least 8 amino acids. These proteins were quantified by amino
acid analysis and are unlabeled. The UPS1 sample consists of the proteins in
equimolar concentration, whereas in the UPS2 sample the same 48 human
proteins are diluted in bins of 8 proteins of equal concentrations to span 5
orders of magnitude.

The samples UPS1 and UPS2 were both purchased from Sigma-Aldrich in
lyophilized form in quantities of 5 pmol per protein for UPS1 (~6.4 ug total
protein) and 10.6 pg total protein for UPS2 (50 pmol to 500 amol). In a first step
both samples were resuspended in 40 pL of denaturation buffer (8 M urea, 100
mM NH4HCO3, pH 8.0). In the case of UPS1 1.1 pg of total protein (860 fmol per
protein) were mixed with 4.4 pg of a Mycobacterium bovis BCG total cell lysate,
while for UPS2 1.8 pg of UPS proteins were mixed with 7.2 pg of cellular lysate.
Subsequently all proteins were reduced with 5 mM tris(2-
carboxyethyl)phosphine (TCEP), alkylated with 40 mM of iodacetamide, 5-times
diluted with 100 mM NH4HCO3 (to 1.6 M urea) and digested at 30°C for 16 hours
with sequence grade modified trypsin (protein to enzyme ratio 50:1). Trypsin
activity was quenched by adding trifluoroacetic acid (TFA) to adjust pH to < 2
and peptides were purified using C18 Micro-Spin columns with loading capacity



5 to 50 pg (The Nest Group Inc., Southborough, MA, USA). After elution with 40%
acetonitrile (ACN), 60% H20 and 0.1% TFA the samples were dried and
resuspended in H20 and 0.1% formic acid (FA), resulting in UPS protein
concentrations of 78.4 fmol/pL for UPS1 (0.4 pg/ul BCG cell lysate) and 490
fmol/pl down to 4.9 amol/pl for UPS2 (0.4 pg/ul BCG cell lysate).

1.2 Shotgun mass spectrometry

The samples UPS1 and UPS2 were measured on a hybrid LTQ-Orbitrap mass
spectrometer (Thermo Fisher, San Jose, CA, USA), equipped with a nano-
electrospray ion source and a NanoLC-2Dplus HPLC system (Eksigent, Dublin,
CA, USA). The system was coupled with a 10 cm and 75 pm diameter column,
which was packed with a Magic C18 AQ 3 um resin (Michrom Bio-Resources,
Auburn, CA, USA). For the UPS1 sample each UPS protein was injected at a
concentration of 78.6 fmol on column, while in the UPS2 sample a concentration
range from 900 fmol to 9 atmol on column was applied. A linear 60 min (UPS1)
or 120 min (UPS2) gradient of 5-35% buffer B (98% ACN, 2% H:0, 0.1% formic
acid) was used to separate the peptides at a flow rate of 300 nL./min. For MS/MS
data acquisition, 5 data-dependent MS/MS scans were acquired in the linear ion
trap for each MS1 scan. The latter was acquired at 60,000 full width at half
maximum (FWHM) nominal resolution settings. A minimum signal threshold
was defined at 250 counts (UPS1) or 150 counts (UPS2). The applied mass scan
range was 350.00 to 1600.00 m/z. The dynamic exclusion function was enabled
with an exclusion duration of 30 s and an exclusion list size of 500 (UPS1) or 300
(UPS2). Only peptides with an assigned charge state of 2+ or higher were
enabled for fragmentation, while unassigned or singly charged states were
rejected. All measurements were carried out in technical triplicates.

UPS1 UPS2

chludwig M1107_273  chludwig M1202_188
chludwig M1107_281  chludwig M1202_189
chludwig M1107_286  chludwig M1202_190
Table 1: UPS 1 and UPS2 shotgun measurement file names

The data is available from the PeptideAtlas raw data repository server:
http://www.peptideatlas.org/PASS/PASS00321

1.3 Targeted mass spectrometry

Only the UPS2 sample was analyzed by SRM on a TSQ Vantage Triple Quadrupole
mass spectrometer (Thermo Fisher, San Jose, CA, USA), equipped with a nano-
electrospray ion source and a NanoLC-2Dplus HPLC system (Eksigent, Dublin,
CA, USA). The spray voltage was set to 1.35 keV and the heated ion transfer tube
was kept at 280°C. The system was coupled with a 10 cm and 75 pm diameter
column packed with a Magic C18 AQ 5 pm resin (Michrom Bio-Resources,
Auburn, CA, USA). A 40 min linear gradient of 5-46% buffer B (98% ACN, 2%
H20, 0.1% formic acid) was used to separate the peptides at a flow rate of 300
nL/min. Q1 and Q3 were obtained at 0.7 amu resolution. Argon was used as
collision gas at a nominal pressure of 1.5 mTorr. Doubly and triply charged
precursor ions were measured and the collision energy was calculated using the
following equations:



2+ precursor: CE = 0.034 = (m/z) - 0.848.
3+ precursor: CE = 0.022 x (m/z) + 5.953.

The 48 UPS2 proteins were measured over four injections per sample and the
UPS2 sample was acquired in technical triplicates. Assays were generated using
a consensus spectral library from the UPS1 shotgun measurements. For each
measurement UPS2 proteins spanning a concentration range from 490 fmol
down to 4.9 amol were injected on column.

chludwig H110822 416  chludwig H110822 417  chludwig H110822_419
chludwig H110822_420  chludwig H110822 422  chludwig H110822_423
chludwig H110822_425  chludwig H110822 426  chludwig H110822_428
chludwig H110822 429  chludwig H110822 431 chludwig H110822_434
Table 2: UPS2 targeted measurement file names

The data is available from the PeptideAtlas raw data repository server:
http://www.peptideatlas.org/PASS/PASS00321

1.4 Shotgun data analysis

The spectra were searched with the search engines X!Tandem using the k-score
plugin (2011.12.01.1) (Keller et al, 2005), OMSSA (2.1.9) (Geer et al., 2004) and
MyriMatch (2.1.138) (Tabb et al, 2007) against the provided database (UPS,
Sigma-Aldrich, St. Louis, MO, USA) concatenated with an M. tuberculosis database
(TuberculList Release 23) (Lew et al.,, 2011) using Trypsin digestion and allowing
0 missed cleavage. Included was 'Carbamidomethyl (C)' as static modification.
The mass tolerances were set to 15 ppm for precursor-ions and 0.4 Da for
fragment-ions. The identified peptides were processed and analyzed through the
Trans-Proteomic Pipeline (4.6.0) (Deutsch et al.,, 2010) using PeptideProphet
(Keller et al., 2002), iProphet (Shteynberg et al., 2011) and ProteinProphet
(Nesvizhskii et al., 2003) scoring. Peptide identifications were reported at FDR of
0.01, corresponding to an iProphet probability of >= 0.85. Label-free
quantification using spectral counts was conducted using an in-house developed
script: All PSM above an iProphet probability >= 0.85 were selected,
corresponding to a peptide FDR of <= 1% and a protein FDR of <= 1%. The label-
free quantification pipeline of OpenMS (1.10) was used as described previously
(Weisser et al., 2013) using peptide identifications with peptide FDR of <= 1%.
Both results were filtered to only contain UPS proteins and peptides and were
imported using the aLFQ import functionality with averaging of runs enabled.
One outlier peptide with sequence “I[ECVSAETTEDCIAK” was removed from both
datasets manually.

1.5 Targeted data analysis

The raw data from targeted MS experiments was manually analyzed using
Skyline (MacLean et al.,, 2010). A consensus spectral library was generated from
the Shotgun data analysis results of UPS1 using SpectraST (4.0) (Lam et al,
2008) and used for transition selection in Skyline. In total 137 peptides and 928
transitions were annotated as true positive. The data is available from the



Panorama Skyline server:
https://daily.panoramaweb.org/labkey/project/Aebersold /ludwig/aLFQ/begin.view?




2 Example application

2.1 Installation of aLFQ

Please note that aLFQ requires R version 2.15.0 or greater. The SCAMPI protein
inference method further requires the installation of two Bioconductor packages.
The packages can be installed by the following commands in R:

source("http://bioconductor.org/biocLite.R")
biocLite("RBGL")
biocLite("graph")

To install aLFQ, execute the following command in R afterwards:

install.packages(“aLFQ”, dependencies=TRUE)

2.2 Model selection for UPS2 SRM dataset
To conduct a full model selection on the example UPS2 SRM dataset, execute the
following steps in an R session with installed aLFQ:

library(aLFQ)

## 1. Step: Training of an APEX model

# Loads APEX data into session. See ?APEXMS for
information on the dataset.

data (APEXMS)

# Generates physicochemical features for APEX ORBI
dataset. See ?apexFeatures for information on the method.
APEX ORBI.af <- apexFeatures(APEX ORBI)

# Trains APEX model. See ?APEX for information on the
method.
APEX ORBI.apex <- APEX(data=APEX_ORBI.af)

## 2. Step: Loading of example data data.

# Loads UPS2 data into session. See ?UPS2MS for
information on the dataset.

data (UPS2MS)

# For other datasets, the import method can be used.
Please refer to ?import for parameters for other
quantfication tools.

# import(ms_filenames =
system.file("extdata", "example skyline.csv",6 package="aLFQ
"), ms filetype = "skyline", concentration filename =
system.file("extdata", "example concentration protein.csv"
,package="aLFQ"), averageruns=FALSE, sumruns=FALSE)

## 3. Step: Model selection and absolute abundance
estimation



# Conducts model selection as described in the main text
on the UPS2 SRM data but with additional protein
inference methods. See ?ALF for further information on
the parameters.

ALF(UPS2_SRM, report filename="ALF SRM report.pdf",
prediction filename="ALF SRM prediction.csv",

peptide methods = c("top", "all", "iBAQ", "APEX", "NSAF",
"SCAMPI"), peptide topx = c(1,2,3), peptide strictness =

"loose", peptide summary = "mean", transition topx =
c(l,2,3), transition strictness = "strict",
transition summary = "sum", fasta =

system.file("extdata","UPS2.fasta",6 package="aLFQ"),
apex model = APEX ORBI.apex, combine precursors = TRUE,
combine peptide sequences = TRUE)

# Conducts the same model selection on the UPS2 spectral
count data.

ALF(UPS2_SC, report filename="ALF_ SC report.pdf",
prediction filename="ALF SC_prediction.csv",

peptide methods = c("top", "all", "iBAQ", "APEX", "NSAF",
"SCAMPI"), peptide topx = c(1,2,3), peptide strictness =
"loose", peptide summary = "mean", transition topx =
c(l), transition strictness = "strict",

transition summary = "sum", fasta =
system.file("extdata","UPS2.fasta",package="aLFQ"),

apex model = APEX ORBI.apex, combine precursors = TRUE,
combine peptide sequences = TRUE)

# Conducts the same model selection on the UPS2 MS1
intensity LFQ data.

ALF(UPS2_LFQ, report filename="ALF LFQ report.pdf",
prediction filename="ALF LFQ prediction.csv",

peptide methods = c("top", "all", "iBAQ", "APEX", "NSAF",
"SCAMPI"), peptide topx = c(1,2,3), peptide strictness =
"loose", peptide summary = "mean", transition topx =
c(l), transition strictness = "strict",

transition summary = "sum", fasta =
system.file("extdata","UPS2.fasta",package="aLFQ"),

apex model = APEX ORBI.apex, combine precursors = TRUE,
combine peptide sequences = TRUE)

The output of these three workflows are for each one PDF file with the report of
the model selection and one CSV file containing the absolute protein abundance
estimates of the protein inference model with the smallest mean fold error.

2.3 Expected Results

Comparing the result reports for the three datasets indicates that different
models should be used for different label-free quantification methods.
Particularly, the application of iBAQ, NSAF and APEX for SRM datasets is not
justified, as not all detectable peptides per protein have been measured. For the
UPS2 SRM dataset, the peptide inference method summarizing the three most
intense transitions per peptide and the three most intense peptides per proteins



results in the smallest mean fold error, whereas NSAF achieves the best results
for spectral counts and iBAQ for MS1 intensities respectively (Fig. 1 - 9).

2.3.1 Results for UPS2 SRM dataset
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Figure 1: Model selection report for the UPS2_SRM dataset. The TopN variant
with three peptides and three proteins performed best. Please note that the SRM
dataset with only selected peptides measured does not fulfill the assumptions of
iBAQ, APEX & NSAF.



CV-MFE: 1.618 CV-RSQ: 0.9493

o _
(3
o ™ (o]
0
(9]
o
S
P (o] o
S @
§ ~—
c
(0]
g o |
o -~
o
o
‘5') o ©
S v
2
o
S
o o /0 (oNe}
n
o' —
T
T T T T T T T
4.5 5.0 5.5 6.0 6.5 7.0 7.5
log10(intensity)

Figure 2: Linear regression plot of log10(intensity) vs log10(concentration) for
the UPS2_SRM dataset. The measured proteins span 3 orders of magnitude with
a cross-validated mean-fold error of 1.618.
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Figure 3: Histogram of the mean fold error for the UPS2_SRM dataset. The 95%
confidence interval is 0.3337 with a mean of 1.618.



2.3.2 Results for UPS2 spectral counts dataset
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Figure 4: Model selection report for the UPS2_SC dataset. The NSAF protein

inference method performed best.
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Figure 5: Linear regression plot of log10(intensity) vs log10(concentration) for
the UPS2_SC dataset. The measured proteins span 2 orders of magnitude with a

cross-validated mean-fold error of 1.752.
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Figure 6: Histogram of the mean fold error for the UPS2_SC dataset. The 95%

confidence interval is 0.4306 with a mean of 1.752.
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2.3.3 Results for UPS2 MS1 intensity dataset
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Figure 7: Model selection report for the UPS2_LFQ dataset. The iBAQ protein
inference method performed best.
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Figure 8: Linear regression plot of log10(intensity) vs log10(concentration) for
the UPS2_LFQ dataset. The measured proteins span 2 orders of magnitude with a
cross-validated mean-fold error of 2.056.
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Figure 9: Histogram of the mean fold error for the UPS2_LFQ dataset. The 95%

confidence interval is 0.8253 with a mean of 2.056.
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3 alLFQ data input formats

3.1 Data import from quantitative MS analysis software

Quantitative results from different MS data analysis software can directly be
imported using the import module from aLFQ. Currently, conversion from the
output formats of OpenSWATH (Roest et al.), OpenMS (Weisser et al., 2013),
mProphet (Reiter et al, 2011), Skyline (MacLean et al, 2010) and Abacus
(Fermin et al., 2011) is supported directly, omitting any further data formatting
or editing step. Table 3 lists the necessary export settings for the supported
software packages.

Software Export

Abacus Default report

OpenMS ProteinQuantifier: “peptides.csv”
OpenSWATH “OpenSWATH_with_dscore.csv”
mProphet “mProphet_bestpeakgroups.xls”
Skyline “Transition Results” report

Table 3: Export settings for primary MS data analysis software packages.

However, also quantitative results from any other software tool can be analyzed
using aLFQ, if the data contains all necessary information and has been
converted into the generic aLFQ format as described below.

3.2 Targeted MS2-level quantification (SRM)

The data structure for targeted MS2-level datasets represents a table containing
the following column header: "run_id" (freetext), "protein_id" (freetext),
"peptide_id" (freetext), "transition_id" (freetext), "peptide_sequence"
(unmodified, natural amino acid sequence in 1-letter nomenclature),
"precursor_charge" (positive integer value), "transition_intensity" (positive non-
logarithm floating value) and “concentration” (calibration: positive non-
logarithm floating value, prediction: “?”).

3.3 Shotgun MS1-level quantification / Shotgun spectral counts

The data structure for MS1-level intensity / spectral counts datasets represents a
table containing the columns "run_id" (freetext), "protein_id" (freetext),
"peptide_id" (freetext), "peptide_sequence" (unmodified, natural amino acid
sequence in 1-letter nomenclature), "precursor_charge" (positive integer value),
"peptide_intensity" (positive non-logarithm floating value) and “concentration”
(calibration: positive non-logarithm floating value, prediction: “?”). It should be
noted, that the spectral count value is also represented by “peptide_intensity”.

3.4 Experimentally determined anchor protein concentrations

To add experimentally determined anchor protein concentrations, a CSV file
must be provided with the columns “run_id” (optional, freetext), “protein_id”
(freetext) and “concentration” (positive non-logarithm floating value).
Optionally, the concentration of endogenous anchor proteins can automatically
be estimated by supplying the spiked-in reference peptides with associated
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concentrations. The concentrations of the endogenous peptides are then
estimated by the peptide intensity ratios. If multiple peptides per protein are
provided, the protein concentration is estimated using the mean of the
endogenous peptide concentrations. A CSV file containing the columns “run_id”
(optional, freetext), “peptide_id” (freetext) and “concentration” (positive non-
logarithm floating value) must be provided.

4 Methods

4.1 Estimation of label-free protein intensities

In bottom-up proteomic approaches, such as shotgun and SRM, not proteins are
the measured entity, but peptides. To adapt absolute label-free quantification
models from the protein to the peptide level, two assumptions are necessary:
First, the theoretical protein intensity can be estimated from the peptide
intensities. Second, the theoretical protein response is approximately constant
for all proteins in a given proteome.

Different methods for protein intensity estimation are applied within aLFQ:

* TopN: Only the N most intense peptides are considered. The estimator for
the protein intensity is the mean of the N measured peptide intensities.
(Silva et al., 2006; Malmstrom et al., 2009; Ludwig et al., 2012)

* iBAQ: All peptides are considered. The estimator for the protein intensity
is the sum of all measured peptide intensities divided by the number of
theoretical fully tryptic peptides between 6 and 30 amino acids for the
protein. (Schwanhausser et al., 2011)

* APEX: All peptides are considered. The estimator for the protein intensity
is the sum of all spectral counts for the protein multiplied with the
probability of detection, normalized by the sum of the predicted
probability of observation of all tryptic peptides for the protein. (Lu et al,
2006)

* NSAF: All peptides are considered. The estimator for the protein intensity
is the sum of all spectral counts for the protein divided by the number of
protein amino acids. (Zybailov et al., 2006)

e SCAMPI: All peptides including those shared between different proteins
are considered. The protein intensity is estimated using markovian-type
assumptions and parameter estimation. (Gerster et al., 2014)
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4.3 Protein concentration estimation using total protein concentration

Label-free protein intensity values can be transferred into absolute protein
concentrations by distributing the total protein concentration per cell among all
quantified proteins according to their MS intensities. However, this approach
requires a correct estimate of the total cellular protein concentration as well as a
(as good as) complete proteomic analysis.

Intensityprotein

concentration,,orein = * total_concentration, otein

total_intensity,,otein

Equation 1: Protein concentration estimation using the total protein
concentration.

For the APEX method implemented within aLFQ normalization is carried out by
assuming that probabilities from ProteinProphet above the threshold can be
rounded to 1.0, because the dataset was filtered using an FDR cutoff instead of
probability.

concentration,,otein
intensityprotein

#observed proteins intensityy’
0 Zk=1 Ok
* total_concentration,,orein
Equation 2: Protein concentration estimation using APEX (Lu et al, 2006).
Intensity being the total assigned number of spectra and O being the sum of the

machine learning scores of all theoretical peptides of a protein.

protein

4.4 Protein concentration estimation using linear correlation to anchor
proteins.

To date, most published absolute label-free protein abundance estimation
approaches for mass spectrometry are based on a linear regression between the
measured label-free protein intensity and the absolute protein concentration:

log(concentrationpmtein) =a+f* log(intensitypmtein) +¢&
Equation 3: Absolute label-free protein abundance estimation using linear
regression. a and 3 being parameters depending on experimental conditions and
€ being the normally distributed error term with mean zero and constant
variance.

To calibrate a and (3, the concentrations of a few anchor proteins must be known.
Accurate measurement of those anchor proteins can be carried out using any
absolute quantification technology, however, most frequently SIS peptides are
used and spiked into the sample. The concentrations of the corresponding
proteins are inferred by the intensity ratio between reference and endogenous
peptide. The SIS peptides are selected for proteins of different concentrations to
cover a maximal dynamic range.
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